
1

Introduction to 
Interactive Ray-Tracing

Introduction to 
Interactive Ray-Tracing

Philipp SlusallekPhilipp Slusallek

OverviewOverview

•• MotivationMotivation
•• RayRay--Tracing AlgorithmTracing Algorithm

• Ray generation, traversal, intersection, shading

•• Rasterization PipelineRasterization Pipeline
•• RayRay--Tracing versus RasterizationTracing versus Rasterization

• Benefits & Drawback
• Open Issues



2

Ray-Tracing AlgorithmRay-Tracing Algorithm

Ray-GenerationRay-Generation

•• Generate initial ray for each pixelGenerate initial ray for each pixel
•• OptionsOptions

• Reuse samples by reprojection
(RenderCache)

• More samples for anti-aliasing
• Other camera models



3

Ray-TraversalRay-Traversal

•• Need to find objects quicklyNeed to find objects quickly
•• Build spatial index structureBuild spatial index structure

• Grid, octree, BSP-tree, BVH, ...
•• AdvantagesAdvantages

• Logarithmic complexity
• Occlusion culling

•• ProblemsProblems
• Multiple intersection computations
• Dynamic scenes

Grid (2D)

Octree (2D)

Ray-Object-IntersectionRay-Object-Intersection

•• Need to compute intersections fastNeed to compute intersections fast
• Requires many floating point operations
• But dominated by traversal (2:1 – 4:1)
• Plenty of algorithms

•Choice depending on input data and environment

•• OptimizationsOptimizations
• Use SIMD CPU-extensions (SSE, AltiVec, 3D-Now) 

•Data parallel execution
• Proper caching of data



4

ShadingShading

•• Shading after visibility has been computedShading after visibility has been computed
• No overhead due to overdraw
• Every ray is shaded exactly once

•• Can generate new rayCan generate new ray
• Shadow, reflection, transmission, ...

•Need to deal with recursion

•• Direct use of Shading LanguagesDirect use of Shading Languages
• RenderMan (e.g. BMRT) and others

Rasterization PipelineRasterization Pipeline

•• Efficient HW implementationEfficient HW implementation
• Use of object coherence
• Speed (up to 45 Mtris/s)
• New features

•• Rendering is driven by App.Rendering is driven by App.
• Application submits geometry

•• Visibility determined at endVisibility determined at end
• Z-buffer fragment test

Application

T&L, Vertex Ops

Rasterization

Texturing

Fragment Ops

Fragment Tests

Framebuffer



5

Ray-Tracing versus RasterizationRay-Tracing versus Rasterization

•• Occlusion Culling & Logarithmic ComplexityOcclusion Culling & Logarithmic Complexity
• RT never even looks at invisible geometry
• RT traversal allows for efficient searching O(log N)
• Rasterization shows linear behavior
• RT wins for complex scenes
• However: Rasterization can be improved

•Early Z-buffer test (e.g. ATI´s Hyper-Z)
•HW-assisted occlusion test

– Requires similar index structure

Ray-Tracing versus RasterizationRay-Tracing versus Rasterization

•• FlexibilityFlexibility
• Handling individual or unstructured groups of rays

• Image-based rendering & RenderCache

•• Correctness & Image QualityCorrectness & Image Quality
• Rasterization relies on approximations

•Environment maps, shadow maps, ...
• Ray-Traced images are “correct” by default

•Shadows, reflections, refractions, ...
•Use of approximations is optional



6

Ray-Tracing versus RasterizationRay-Tracing versus Rasterization

•• Simple Simple and and Efficient ShadingEfficient Shading
• No overhead
• Direct use of Shading Languages

•• Parallel ScalabilityParallel Scalability
• Ray-Tracing is „embarrassingly parallel“
• Should scale well with hardware
• Initial hardware cost is higher than for rasterization

Ray-Tracing versus RasterizationRay-Tracing versus Rasterization

•• CoherenceCoherence
• Key to efficient rendering
• Rasterization: Object coherence

•Efficient rasterization
• Ray-Tracing: Ray coherence

• Improved caching & reduced bandwidth
•Allows for data parallel computation

• RT has much more coherence than assumed



7

Open Research ProblemsOpen Research Problems

•• HardwareHardware
• What is the best HW architecture?

•• Dynamic ScenesDynamic Scenes
• Optimized rebuild or transformation of index?

•• APIAPI
• Better alternative to OpenGL´s „push model“?

•• Can RT eventually replace rasterization?Can RT eventually replace rasterization?


